A probabilistic proof of the Andrews-Gordon identities

نویسنده

  • Robin J. Chapman
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rogers-ramanujan Identities, the Finite General Linear Groups, and the Hall-littlewood Polynomials

We connect Gordon’s generalization of the Rogers-Ramanujan identities with the Hall-Littlewood polynomials and with generating functions which arise in a probabilistic setting in the finite general linear groups. This yields a Rogers-Ramanujan type product formula for the n → ∞ probability that an element of GL(n, q) or Mat(n, q) is semisimple. 1. Background and notation The Rogers-Ramanujan id...

متن کامل

Binomial Andrews-gordon-bressoud Identities

Binomial versions of the Andrews-Gordon-Bressoud identities are given.

متن کامل

An iterative-bijective approach to generalizations of Schur's theorem

We start with a bijective proof of Schur’s theorem due to Alladi and Gordon and describe how a particular iteration of it leads to some very general theorems on colored partitions. These theorems imply a number of important results, including Schur’s theorem, Bressoud’s generalization of a theorem of Göllnitz, two of Andrews’ generalizations of Schur’s theorem, and the Andrews-Olsson identities.

متن کامل

Parity in Partition Identities

This paper considers a variety of parity questions connected with classical partition identities of Euler, Rogers, Ramanujan and Gordon. We begin by restricting the partitions in the Rogers-Ramanujan-Gordon identities to those wherein even parts appear an even number of times. We then take up questions involving sequences of alternating parity in the parts of partitions. This latter study leads...

متن کامل

Variants of the Andrews-gordon Identities

The object of this paper is to propose and prove a new generalization of the Andrews-Gordon Identities, extending a recent result of Garrett, Ismail and Stanton. We also give a combinatorial discussion of the finite form of their result which appeared in the work of Andrews, Knopfmacher, and Paule.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 290  شماره 

صفحات  -

تاریخ انتشار 2005